I-12: Nuclear Reprogramming in Bovin Somatic Cell Nuclear Transfer

author

  • Tian XC
Abstract:

Somatic cell nuclear transfer (SCNT or cloning) returns a differentiated cell to a totipotent status; a process termed nuclear reprogramming. Reproductive cloning has potential applications in both agriculture and biomedicine, but is limited by low efficiency. To understand the deficiencies of nuclear reprogramming, our research has focused on both candidate genes and global gene expression patterns in cloned bovine embryos/offspring as compared to those generated by conventional reproduction. We also studied the telomere restoration, growth patterns, behavior, reproduction, and milk and meat compositions of cloned animals. Cloned animals that survived beyond the first month of life are generally normal and healthy. We found aberrant expression patterns in both imprinted as well as X-linked genes in term cloned calves. The expression profiles of cloned blastocysts, however, closely resembled those of the naturally fertilized embryos but were considerably different from those of their nuclear donor cells. Our findings suggest that cloned embryos have undergone significant nuclear reprogramming by the blastocyst stage. However, it is possible that during re-differentiation in later development gene expression aberrancies occur. Additionally, small initial nuclear reprogramming errors may be manifested during subsequent development.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

full text

Epigenetic reprogramming by somatic cell nuclear transfer in primates.

We recently demonstrated that somatic cells from adult primates could be reprogrammed into a pluripotent state by somatic cell nuclear transfer. However, the low efficiency with donor cells from one monkey necessitated the need for large oocyte numbers. Here, we demonstrate nearly threefold higher blastocyst development and embryonic stem (ES) cell derivation rates with different nuclear donor ...

full text

Premature chromosome condensation is not essential for nuclear reprogramming in bovine somatic cell nuclear transfer.

Premature chromosome condensation (PCC) was believed to promote nuclear reprogramming and to facilitate cloning by somatic cell nuclear transfer (NT) in mammalian species. However, it is still uncertain whether PCC is necessary for the successful reprogramming of an introduced donor nucleus in cattle. In the present study, fused NT embryos were subjected to immediate activation (IA, simultaneou...

full text

Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling.

BACKGROUND Somatic cell nuclear transfer (SCNT) requires cytoplast-mediated reprogramming of the donor nucleus. Cytoplast factors such as maturation promoting factor are implicated based on their involvement in nuclear envelope breakdown (NEBD) and premature chromosome condensation (PCC). Given prior difficulties in SCNT in primates using conventional protocols, we hypothesized that the ability...

full text

Coexpression analysis identifies nuclear reprogramming barriers of somatic cell nuclear transfer embryos

The success of cloned animal "Dolly Sheep" demonstrated the somatic cell nuclear transfer (SCNT) technique holds huge potentials for mammalian asexual reproduction. However, the extremely poor development of SCNT embryos indicates their molecular mechanism remain largely unexplored. Deciphering the spatiotemporal patterns of gene expression in SCNT embryos is a crucial step toward understanding...

full text

Efficiency of Ovine Fibroblast or Cumulus Cells For Somatic Cell Nuclear Transfer in Sheep

Purpose: Despite remarkable progresses have been achieved in the field of somatic cell nuclear transfer (SCNT), there is little information regarding the effect of donor cell type on the efficiency mammalian somatic cell cloning in vitro. This study compared in vitro developmental competency of sheep enucleated oocytes reconstructed with either fibroblast or cumulus cells. Material and methods...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 2

pages  -

publication date 2012-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023